Paper in IEEE CVPR 2013: “Geometric Context from Videos”


  • S. H. Raza, M. Grundmann, and Irfan Essa (2013), “Geoemetric Context from Video,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013. [PDF] [WEBSITE] [VIDEO] [DOI] [BIBTEX]
    @InProceedings{ 2013-Raza-GCFV,
    author  = {Syed Hussain Raza and Matthias Grundmann and Irfan
    booktitle  = {{IEEE Conference on Computer Vision and Pattern
    Recognition (CVPR)}},
    doi = {10.1109/CVPR.2013.396},
    month = {June},
    organization  = {IEEE Computer Society},
    pdf = {},
    title = {Geoemetric Context from Video},
    url = {},
    video = {},
    year = {2013},
    bdsk-url-3  = {}


We present a novel algorithm for estimating the broad 3D geometric structure of outdoor video scenes. Leveraging spatio-temporal video segmentation, we decompose a dynamic scene captured by a video into geometric classes, based on predictions made by region-classifiers that are trained on appearance and motion features. By examining the homogeneity of the prediction, we combine predictions across multiple segmentation hierarchy levels alleviating the need to determine the granularity a priori. We built a novel, extensive dataset on geometric context of video to evaluate our method, consisting of over 100 ground-truth annotated outdoor videos with over 20,000 frames. To further scale beyond this dataset, we propose a semi-supervised learning framework to expand the pool of labeled data with high confidence predictions obtained from unlabeled data. Our system produces an accurate prediction of geometric context of video achieving 96% accuracy across main geometric classes.

via IEEE Xplore – Geometric Context from Videos.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.