A searchable list of some of my publications is below. You can also access my publications from the following sites.
My ORCID is
Publications:
Lijun Yu, José Lezama, Nitesh B. Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, Alexander G. Hauptmann, Boqing Gong, Ming-Hsuan Yang, Irfan Essa, David A. Ross, Lu Jiang
Language Model Beats Diffusion -- Tokenizer is Key to Visual Generation Proceedings Article
In: Proceedings of International Conference on Learning Representations (ICLR) , 2024.
Abstract | Links | BibTeX | Tags: AI, arXiv, computer vision, generative AI, google, ICLR
@inproceedings{2024-Yu-LMBDVG,
title = {Language Model Beats Diffusion -- Tokenizer is Key to Visual Generation},
author = {Lijun Yu and José Lezama and Nitesh B. Gundavarapu and Luca Versari and Kihyuk Sohn and David Minnen and Yong Cheng and Vighnesh Birodkar and Agrim Gupta and Xiuye Gu and Alexander G. Hauptmann and Boqing Gong and Ming-Hsuan Yang and Irfan Essa and David A. Ross and Lu Jiang},
url = {https://arxiv.org/abs/2310.05737
https://arxiv.org/pdf/2310.05737},
doi = { https://doi.org/10.48550/arXiv.2310.05737},
year = {2024},
date = {2024-05-14},
urldate = {2024-05-14},
booktitle = {Proceedings of International Conference on Learning Representations (ICLR)
},
abstract = {While Large Language Models (LLMs) are the dominant models for generative tasks in language, they do not perform as well as diffusion models on image and video generation. To effectively use LLMs for visual generation, one crucial component is the visual tokenizer that maps pixel-space inputs to discrete tokens appropriate for LLM learning. In this paper, we introduce MAGVIT-v2, a video tokenizer designed to generate concise and expressive tokens for both videos and images using a common token vocabulary. Equipped with this new tokenizer, we show that LLMs outperform diffusion models on standard image and video generation benchmarks including ImageNet and Kinetics. In addition, we demonstrate that our tokenizer surpasses the previously top-performing video tokenizer on two more tasks: (1) video compression comparable to the next-generation video codec (VCC) according to human evaluations, and (2) learning effective representations for action recognition tasks.
},
keywords = {AI, arXiv, computer vision, generative AI, google, ICLR},
pubstate = {published},
tppubtype = {inproceedings}
}
José Lezama, Tim Salimans, Lu Jiang, Huiwen Chang, Jonathan Ho, Irfan Essa
Discrete Predictor-Corrector Diffusion Models for Image Synthesis Proceedings Article
In: International Conference on Learning Representations (ICLR), 2023.
Abstract | Links | BibTeX | Tags: computer vision, generative AI, generative media, google, ICLR, machine learning
@inproceedings{2023-Lezama-DPDMIS,
title = {Discrete Predictor-Corrector Diffusion Models for Image Synthesis},
author = {José Lezama and Tim Salimans and Lu Jiang and Huiwen Chang and Jonathan Ho and Irfan Essa},
url = {https://openreview.net/forum?id=VM8batVBWvg},
year = {2023},
date = {2023-05-01},
urldate = {2023-05-01},
booktitle = {International Conference on Learning Representations (ICLR)},
abstract = {We introduce Discrete Predictor-Corrector diffusion models (DPC), extending predictor-corrector samplers in Gaussian diffusion models to the discrete case. Predictor-corrector samplers are a class of samplers for diffusion models, which improve on ancestral samplers by correcting the sampling distribution of intermediate diffusion states using MCMC methods. In DPC, the Langevin corrector, which does not have a direct counterpart in discrete space, is replaced with a discrete MCMC transition defined by a learned corrector kernel. The corrector kernel is trained to make the correction steps achieve asymptotic convergence, in distribution, to the correct marginal of the intermediate diffusion states. Equipped with DPC, we revisit recent transformer-based non-autoregressive generative models through the lens of discrete diffusion, and find that DPC can alleviate the compounding decoding error due to the parallel sampling of visual tokens. Our experiments show that DPC improves upon existing discrete latent space models for class-conditional image generation on ImageNet, and outperforms continuous diffusion models and GANs, according to standard metrics and user preference studies},
keywords = {computer vision, generative AI, generative media, google, ICLR, machine learning},
pubstate = {published},
tppubtype = {inproceedings}
}
Erik Wijmans, Manolis Savva, Irfan Essa, Stefan Lee, Ari S. Morcos, Dhruv Batra
Emergence of Maps in the Memories of Blind Navigation Agents Best Paper Proceedings Article
In: Proceedings of International Conference on Learning Representations (ICLR), 2023.
Abstract | Links | BibTeX | Tags: awards, best paper award, computer vision, google, ICLR, machine learning, robotics
@inproceedings{2023-Wijmans-EMMBNA,
title = {Emergence of Maps in the Memories of Blind Navigation Agents},
author = {Erik Wijmans and Manolis Savva and Irfan Essa and Stefan Lee and Ari S. Morcos and Dhruv Batra},
url = {https://arxiv.org/abs/2301.13261
https://wijmans.xyz/publication/eom/
https://openreview.net/forum?id=lTt4KjHSsyl
https://blog.iclr.cc/2023/03/21/announcing-the-iclr-2023-outstanding-paper-award-recipients/},
doi = {10.48550/ARXIV.2301.13261},
year = {2023},
date = {2023-05-01},
urldate = {2023-05-01},
booktitle = {Proceedings of International Conference on Learning Representations (ICLR)},
abstract = {Animal navigation research posits that organisms build and maintain internal spatial representations, or maps, of their environment. We ask if machines -- specifically, artificial intelligence (AI) navigation agents -- also build implicit (or 'mental') maps. A positive answer to this question would (a) explain the surprising phenomenon in recent literature of ostensibly map-free neural-networks achieving strong performance, and (b) strengthen the evidence of mapping as a fundamental mechanism for navigation by intelligent embodied agents, whether they be biological or artificial. Unlike animal navigation, we can judiciously design the agent's perceptual system and control the learning paradigm to nullify alternative navigation mechanisms. Specifically, we train 'blind' agents -- with sensing limited to only egomotion and no other sensing of any kind -- to perform PointGoal navigation ('go to Δ x, Δ y') via reinforcement learning. Our agents are composed of navigation-agnostic components (fully-connected and recurrent neural networks), and our experimental setup provides no inductive bias towards mapping. Despite these harsh conditions, we find that blind agents are (1) surprisingly effective navigators in new environments (~95% success); (2) they utilize memory over long horizons (remembering ~1,000 steps of past experience in an episode); (3) this memory enables them to exhibit intelligent behavior (following walls, detecting collisions, taking shortcuts); (4) there is emergence of maps and collision detection neurons in the representations of the environment built by a blind agent as it navigates; and (5) the emergent maps are selective and task dependent (e.g. the agent 'forgets' exploratory detours). Overall, this paper presents no new techniques for the AI audience, but a surprising finding, an insight, and an explanation.},
keywords = {awards, best paper award, computer vision, google, ICLR, machine learning, robotics},
pubstate = {published},
tppubtype = {inproceedings}
}
Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh, Manolis Savva, Dhruv Batra
Decentralized Distributed PPO: Solving PointGoal Navigation Proceedings Article
In: Proceedings of International Conference on Learning Representations (ICLR), 2020.
Abstract | Links | BibTeX | Tags: embodied agents, ICLR, navigation, systems for ML
@inproceedings{2020-Wijmans-DDSPN,
title = {Decentralized Distributed PPO: Solving PointGoal Navigation},
author = {Erik Wijmans and Abhishek Kadian and Ari Morcos and Stefan Lee and Irfan Essa and Devi Parikh and Manolis Savva and Dhruv Batra},
url = {https://arxiv.org/abs/1911.00357
https://paperswithcode.com/paper/decentralized-distributed-ppo-solving},
year = {2020},
date = {2020-04-01},
urldate = {2020-04-01},
booktitle = {Proceedings of International Conference on Learning Representations (ICLR)},
abstract = {We present Decentralized Distributed Proximal Policy Optimization (DD-PPO), a method for distributed reinforcement learning in resource-intensive simulated environments. DD-PPO is distributed (uses multiple machines), decentralized (lacks a centralized server), and synchronous (no computation is ever stale), making it conceptually simple and easy to implement. In our experiments on training virtual robots to navigate in Habitat-Sim, DD-PPO exhibits near-linear scaling -- achieving a speedup of 107x on 128 GPUs over a serial implementation. We leverage this scaling to train an agent for 2.5 Billion steps of experience (the equivalent of 80 years of human experience) -- over 6 months of GPU-time training in under 3 days of wall-clock time with 64 GPUs.
This massive-scale training not only sets the state of art on Habitat Autonomous Navigation Challenge 2019, but essentially solves the task --near-perfect autonomous navigation in an unseen environment without access to a map, directly from an RGB-D camera and a GPS+Compass sensor. Fortuitously, error vs computation exhibits a power-law-like distribution; thus, 90% of peak performance is obtained relatively early (at 100 million steps) and relatively cheaply (under 1 day with 8 GPUs). Finally, we show that the scene understanding and navigation policies learned can be transferred to other navigation tasks -- the analog of ImageNet pre-training + task-specific fine-tuning for embodied AI. Our model outperforms ImageNet pre-trained CNNs on these transfer tasks and can serve as a universal resource (all models and code are publicly available).},
keywords = {embodied agents, ICLR, navigation, systems for ML},
pubstate = {published},
tppubtype = {inproceedings}
}
This massive-scale training not only sets the state of art on Habitat Autonomous Navigation Challenge 2019, but essentially solves the task --near-perfect autonomous navigation in an unseen environment without access to a map, directly from an RGB-D camera and a GPS+Compass sensor. Fortuitously, error vs computation exhibits a power-law-like distribution; thus, 90% of peak performance is obtained relatively early (at 100 million steps) and relatively cheaply (under 1 day with 8 GPUs). Finally, we show that the scene understanding and navigation policies learned can be transferred to other navigation tasks -- the analog of ImageNet pre-training + task-specific fine-tuning for embodied AI. Our model outperforms ImageNet pre-trained CNNs on these transfer tasks and can serve as a universal resource (all models and code are publicly available).
Other Publication Sites
A few more sites that aggregate research publications: Academic.edu, Bibsonomy, CiteULike, Mendeley.
Copyright/About
[Please see the Copyright Statement that may apply to the content listed here.]
This list of publications is produced by using the teachPress plugin for WordPress.